问题详情
答题翼
>
问答
>
大学本科
> 正文
目录:
标题
|
题干
|
答案
|
搜索
|
相关
证明f(x)为E上可测函数的充要条件是:对任一有理数r 集E(f>r)恒可测。如果假设对任一有理数r 集E(f=r)恒可测
证明f(x)为E上可测函数的充要条件是:对任一有理数r,集E(f>r)恒可测。如果假设对任一有理数r,集E(f=r)恒可测,问f(x)是否可测?
参考答案
您可能感兴趣的试题
设f(x),g(x)都是E上可测函数,g(x)∈L,且在E上几乎处处成立f(x)≤g(x)。问f(x)是否可积?
答案解析
设E×[0,1]上f(x,y)满足:f(x,y)是x∈E上的可测函数,且f(x,y)是y∈[0,1]上的连续函数,试证明: (i)f(x,y)是E×[0
答案解析
证明函数f(z)=u(x y)+iv(x y)在z0=x0+iy0处连续的充要条件是:u(x y)
答案解析
设f(x)是-∞<x<∞上的连续函数。g(x)是a≤x≤b上的可测函数 则f(g(x))是可测函数
答案解析
函数f(x)在[0 +∞)上可导 f(0)=1 且满足等式 。 (1)求导数f(x); (2)证明:当x≥0时 不等
答案解析
试证明: 设{fn(x}}是R1上非负渐降连续函数列.若在有界闭集F上fn(x)→0(n→∞) 则fn(x)在F上一致收敛于零.
答案解析
设f(x)是定义在上的连续函数 对任意的t∈R1 令Et={x∈E:f(x)>t} 试证明存在Rn中包含E的开集Gt 使得Et=E∩Gt.
答案解析