问题详情
答题翼
>
问答
>
大学本科
> 正文
目录:
标题
|
题干
|
答案
|
搜索
|
相关
函数f(x)在[0 +∞)上可导 f(0)=1 且满足等式 。 (1)求导数f(x); (2)证明:当x≥0时 不等
函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式
。 (1)求导数f(x); (2)证明:当x≥0时,不等式e-x≤f(x)≤1成立.
请帮忙给出正确答案和分析,谢谢!
参考答案
您可能感兴趣的试题
已知函数f(x)在[0 1]上连续 在(0 1)内可导 且f(0)=0 f(1)=1.证明:(I)存在ξ∈(0 1) 使得f(ξ)=1-ξ;(
答案解析
设函数f(x)在闭区间[a b]上连续 在开区间(a b)内可导 且f(x)>0.若极限存在 证明: (1)在(a b)内f
答案解析
设函数f(x)在闭区间[0 1]上连续 在开区间(0 1)内可导 且f(0)=0 f(1)=1 证明:对于任意给定的正数a b 在开区
答案解析
设函数f(x)在[0 1]上连续 在(0 1)内可导 且证明在(0 1)内存在一点ξ 使f(ξ)=0。
答案解析
设函数f(x)在[a b]上连续 在(a b)内可导 且f'(x)≤0 证明在(a b)内F'(x)≤0.
答案解析
函数f(x)在[a b]上可导 且f’(x)<0是函数在该区间上单调递减的()。
答案解析
函数f(x)在[a b]上可导 且f’(x)>0是函数在该区间上单调递增的()。
答案解析