问题详情
答题翼
>
问答
>
大学专科
> 正文
目录:
标题
|
题干
|
答案
|
搜索
|
相关
设函数f(x)在[0 1]上连续 在(0 1)内可导 且证明在(0 1)内存在一点ξ 使f(ξ)=0。
设函数f(x)在[0,1]上连续,在(0,1)内可导,且
证明在(0,1)内存在一点ξ,使f"(ξ)=0。
请帮忙给出正确答案和分析,谢谢!
参考答案
您可能感兴趣的试题
已知函数f(x)在[0 1]上连续 在(0 1)内可导 且f(0)=0 f(1)=1.证明:(I)存在ξ∈(0 1) 使得f(ξ)=1-ξ;(
答案解析
设函数f(x)在闭区间[a b]上连续 在开区间(a b)内可导 且f(x)>0.若极限存在 证明: (1)在(a b)内f
答案解析
设f(x)在[0 1]上连续 在(0 1)内可导 且f(0)=f(1)=0 试证在(0 1)内至少存在一点x0 使f'(x0)=1
答案解析
设函数f(x)在闭区间[0 1]上连续 在开区间(0 1)内可导 且f(0)=0 f(1)=1 证明:对于任意给定的正数a b 在开区
答案解析
设f(x)在闭区间[0 1]上连续 在开区间(0 1)内可导 且f(0)=f(1)=0 试证在(0 1)内至少存在一点 使
答案解析
设f(x)在[0 1]上连续 在(0 1)内可导 且f(0)=f(1)=0证明在(0 1)内至少存在ξ和η 使 |f'(ξ)|≥2M |f'(
答案解析
设函数f(x)在[0 π]上连续 且|f(x)dx=0 |f(x)cosxdx=0 试证明:在(0 π)内至少存在两个不同的点ξ1 ξ
答案解析