问题详情
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f(x)≥0,g(x)≥0.证明:对任何a∈[0,1],有 ∫0ag(x)f(x)dx+∫01f(x)g(x)dx≥f(a)g(1)。
请帮忙给出正确答案和分析,谢谢!