问题详情
设f是拓扑空间(X,τ)上的任意复函数,定义
φ(x,V)=sup{|f(s)-f(t)|:s,t∈V}, V∈τ,x∈V;
φ(x)=inf{φ(x,V):V∈τ),x∈V.
证明φ是上半连续的,并且f在点x连续当且仅当φ(x)=0.从而任何复函数连续点的集都是一个Gδ集.