问题详情
设随机过程
X(t)=acos(Ωt+Θ),-∞<t<+∞,
其中a是常数,随机变量Θ~U(0,2π),随机变量Ω具有概率密度f(x),设f(x)连续且为偶函数,Θ与Ω相互独立.试证X(t)是平稳过程,且其谱密度为
SX(ω)=a2πf(ω).