-
应用牛顿法于方程f(x)=xn-a=0和,分别导出求的迭代公式,并求
-
应用牛顿法于方程 f(x)=xn-a=0 (2.25) 和 , (2.26) 分别导出求的迭代公式,并求极限,其中.
-
设f(x)在[0 +∞)上可微 且0≤f(x)≤f(x) f(0)=0。证明:在[0 +∞)上f(
-
设函数f(x)在x=0的某邻域内具有二阶连续导数。且f(0)≠0 f(0)≠0 f(0)≠0.证明:存在唯一的一组实数λ
-
设函数f(x)在[0 1]上有二阶连续导数 且f(0)=f(1)=0 f(x)≠0 x∈(0 1) 证明
-
设函数f(x)在[a b]上连续 在(a b)内可导 且f'(x)≤0 证明在(a b)内F'(x)≤0.
-
设f(x) g(x)在[0 1]上的导数连续 且f(0)=0 f(x)≥0 g(x)≥0.证明:对任何a∈[0 1] 有 ∫0ag(x)f(