问题详情

答题翼 > 问答 > 大学本科 > 正文
目录: 标题| 题干| 答案| 搜索| 相关

设A为n阶方阵 A*为A的伴随矩阵 证明: n r(A)=n r(A*)= 1 r(A)=n-1 0 r(A)


设A为n阶方阵,A*为A的伴随矩阵,证明: n,r(A)=n r(A*)= 1,r(A)=n-1 0,r(A)<n-1

参考答案
您可能感兴趣的试题